June 10, 2023

Freedom of Information Officer
NNSA Service Center
Office of Public Affairs
P.O. Box 5400
Albuquerque, NM 87185-5400

FOIA Request for 2018 NNSA Plutonium Pit Aging Report

To Whom it Concerns:

This is a request filed under the Freedom of Information Act, as amended. Per applicable law and Department of Energy regulations, I anticipate a response to this request within 20 days. If the requested documents are not provided within 20 days please provide the reason why and give an estimated date by which they will be provided to me.

The Freedom of Information Act states that “[e]ach agency, upon any request for records made under paragraph . . . (3) . . . shall determine within 20 [working] days . . . whether to comply with such request and shall immediately notify the person making such request of . . . such determination and the reasons therefor.” 5 U.S.C. § 552(a)(6)(A)(i). “[I]n order to make a determination,” an agency must, inter alia, “determine and communicate the scope of the documents it intends to produce and withhold, and the reasons for withholding any documents.” *Citizens for Responsibility and Ethics in Washington v. Fed. Election Comm’n*, 711 F.3d 180, 188 (D.C. Cir. 2013).

In “unusual circumstances,” an agency may extend FOIA’s 20 working-day deadline by up to ten additional working days, but the agency must also provide written notice to the requester including “the date on which a determination is expected to be dispatched.” 5 U.S.C. § 552(a)(6)(B)(i). Similarly, FOIA requires agencies to “provide[] information about the status of a request,” “including . . . an estimated date on which the agency will complete action on the request.” *Id.* § 552(a)(7)(B). DOE’s regulations recognize these requirements. See 10 C.F.R. § 1004.5(d)(1) (stating that DOE will act “within 20 days of a request for DOE records being received”); *id.* § 1004.5(d)(1)(iii) (recognizing that if DOE invokes “unusual circumstances” it may “take an extension not to exceed ten days” and must provide “the date on which a determination is expected to be dispatched”).

This request is being filed on behalf of Savannah River Site Watch (SRS Watch), a corporation duly registered with the State of South Carolina and a registered 501(c)(3) non-profit
organization. In addition to many FOIAs filed on behalf of SRS Watch, I have filed many FOIA requests with DOE on behalf of other non-profit organizations, including Friends of the Earth, the Alliance for Nuclear Accountability, Greenpeace and the Nuclear Control Institute.

I request that any fees that may be associated with this request be waived. The information obtained in response to this request will be used solely for non-profit purposes in South Carolina and the United States. The information will contribute to the public’s understanding of the manner in which DOE’s National Nuclear Security Administration (NNSA) conducts its business and will specifically be used to inform the public and elected officials about NNSA’s effort to expand production of plutonium pits for nuclear weapons. Little information has been released by NNSA to the public about pit aging, underscoring the importance of this request. Over the years, I have demonstrated an ability to use information gathered via FOIA requests in a manner so as to educate the public about DOE and issues it is addressing. I request that the fee-waiver standard that has been applied to my requests in the past be applied to this request.

If any claim is made that any portion of any located document is sensitive in nature or meets FOIA exclusions, I request that a redacted copy of the document be provided to me and that a full explanation be provided as to the reasons for any redactions.

This request applies to the US Department of Energy, DOE’s National Nuclear Security Administration, the NNSA’s Advisory Committee for Nuclear Security (formerly Defense Programs Advisory Committee) and to any NNSA office or committee or contractors that may have worked on the requested pit aging report.

I hereby request the following document:

A 2018 report by the Defense Programs Advisory Committee (now called the Advisory Committee on Nuclear Security), as mentioned in the attached JASON 2019 letter report on pit aging, that “revisited Pu-aging issues.” Also requested are any attachment to that report.

Please get in touch if you have questions about this request. Please use this email for communication with me: tomclements329@cs.com and telephone 803-834-3084. I thank you for your prompt response.

Sincerely,

[Signature]

Tom Clements
Director, Savannah River Site Watch
November 23, 2019

Dr. Tod Caldwell
US Department of Energy Defense Programs NA-11
1000 Independence Ave, SW
Washington, DC 20585

This Letter Report to the NNSA is in response to the 2019 Pit Aging JASON summer study charge (Statement of Work attached). A 2006 JASON report (JSR-06-335), entitled Pit Lifetime, examined effects of plutonium aging on primary performance to provide system lifetime estimates for a majority of pit designs in the stockpile. A Defense Programs Advisory Committee (DPAC) report completed in 2018 also revisited Pu-aging issues.

Over the past decade, independently validated experiments have identified examples of age-induced changes in naturally and artificially aged δ-phase Pu. Today’s modeling and simulation codes are used with measured rates of change to predict pit and primary performance for warheads over the planned decades of their deployment. The conclusions are based on quantification of margins and uncertainties (QMU), the current approach used to assess the health of the stockpile. While the present assessments of aging do not indicate any impending issues for the stockpile, the possibility that the codes could be out of their domain of validity when they are used to assess aged pits indicate that continued research and ongoing surveillance are required to anticipate any unexpected developments.

The Statement of Work asks JASON to consider the body of work plutonium aging since 2006, and asks if the scientific program responded to the 2006 JASON Pit Lifetime study recommendations. For the present study, JASON is also asked to identify critical areas that may need further attention.

We list below the questions posed to JASON and our response.

1. Is the body of work to date, as well as the proposed future work, sufficient to reduce or bound uncertainties in order to provide a sound scientific basis for lifetime assessments? What are the critical areas of study that need further consideration (if any)?

LLNL and LANL have made important progress on some of the recommendations of the 2006 JASON Pit Lifetime report. An important example is accelerated aging of Pu to the point where changes in various properties become clearly measurable. But in general, studies on Pu aging and its impacts on the performance of nuclear-weapon primaries have not been sufficiently prioritized over the past decade. A focused program of experiments, theory, and simulations is
required to determine the timescales over which Pu aging may lead to an unacceptable degradation of primary performance.

For future work, JASON recommends that LLNL and LANL continue to pursue a sustained program to improve their understanding of Pu aging on pits. The goal should be to identify specific mechanisms for changes in Pu properties that would degrade primary performance, and to determine the timescales over which the performance margin of stockpile weapons would be sufficiently degraded to elicit concern. The experiments and their analysis should be designed to yield clear results that guide simulations of pit aging in the future, minimizing the probability of false positives or false negatives.

The program should assess and, if necessary, mitigate threats to primary performance caused by Pu aging. The labs briefly presented their program to address Pu aging to JASON. The plan seemed sensible, but a detailed JASON assessment would require additional information about the program as well as technical details.

Continued study of Pu-aging should address the following:

- Investigation of the properties of naturally and artificially aged Pu that are relevant to primary yield. These include compressibility, strength, and entropy at weapons-relevant pressures and densities.
- Completion of aging studies for the full set of Pu materials used in the stockpile.
- Extending the range of accelerated aging to identify the types, modes, timescales, and uncertainties in changes of Pu behavior that would affect primary performance.
- The utility of integrated sub-critical experiments with new and aged Pu pits should be explored. They could cover the temperature and pressure conditions encountered during primary implosion to provide information about consequences of Pu aging.

2. In addition to re-establishing a pit manufacturing capability, are there prudent actions that could be taken to increase margins against uncertainty associated with plutonium aging?

A variety of measures might compensate for potential Pu-aging-related effects on primaries:

- Changes in boost-gas composition and concentration can increase performance margins; this mitigation approach is underway, or already completed, for primaries in the stockpile.
- Performance margins could be increased by modifying the high explosive, or by other means. Such measures should be undertaken with care, because they may take the stockpile away from the underground test base used to certify the weapons.
- Maintaining a diversity of weapon types and ages can hedge against the risk of age-related common-mode failures.

Finally, we urge that pit manufacturing be re-established as expeditiously as possible in parallel with the focused program to understand Pu aging, to mitigate against potential risks posed by
UNCLASSIFIED

Pu aging on the stockpile. The reuse of aged pits in rebuilt primaries can address certain issues, but cannot change the aged pits themselves. A significant period of time will be required to recreate the facilities and expertise needed to manufacture Pu pits. Given the number and age distribution of weapons in the stockpile, it will then include some eighty-year-old pits, even under most favorable circumstances.

The Appendix (S//RD) contains JASON's Findings and Recommendation for this letter report.

DISTRIBUTION A: Approved for public release. Distribution is unlimited.

Contact: Gordon Long – glong@mitre.org